Популярная физика. От архимедова рычага до квантовой теории - читать онлайн книгу. Автор: Айзек Азимов cтр.№ 48

читать книги онлайн бесплатно
 
 

Онлайн книга - Популярная физика. От архимедова рычага до квантовой теории | Автор книги - Айзек Азимов

Cтраница 48
читать онлайн книги бесплатно

Если же мы погрузимся в воду, то давление извне быстро увеличится, а это не может быть скомпенсировано давлением изнутри нашего тела без нанесения ущерба нашим тканям. По этой причине не защищенный ничем, кроме водолазного костюма, человек может проникнуть только на строго ограниченную глубину, независимо от того, настолько хорошо он снабжается кислородом. С другой стороны, живые формы, приспособленные к жизни на глубине, существуют в самых экстремальных безднах океана, там, где водяное давление превышает тысячу атмосфер. Эти формы жизни также не сознают огромного давления (поскольку оно сбалансировано снаружи и изнутри), которое оказывается на них, и также беспрепятственно перемещаются, как это делаем мы, не замечающие давления воздуха.

Как только было признано, что воздух имеет вес и способен создавать давление, было также быстро признано, что это можно легко продемонстрировать, если обеспечить разность давлений снаружи и изнутри. Другими словами, казалось, что возможно полностью удалить воздух изнутри сосуда, создав там «вакуум» (латинское слово, означающее «пустой»), так чтобы атмосферное давление извне осталось не уравновешенным каким-либо заметным давлением изнутри. Торричелли получил (по случайной неосторожности) первый искусственно созданный вакуум, когда он перевернул вверх ногами свою трубку с ртутью. Ртутный столбик, который выливался в чашку, оставлял после себя небольшой объем «ничего» (если не считать небольших завихрений паров ртути); это явление до сих пор называется «Торричеллиева пустота».

Всего на несколько лет позже, в 1650 году, немецкий физик Отто фон Герике (1602–1686) изобрел механическое устройство, которое постепенно отсасывало воздух из контейнера. Это позволило ему по желанию формировать вакуум различной требуемой величины и демонстрировать эффекты неуравновешенного атмосферного давления. Он создал такое разрежение, что внешнее атмосферное давление удержало от расцепления два металлических полушария, которые пытались разорвать две упряжки по восемь лошадей, прицепленные к полушариям канатами и подгоняемые кнутами возниц. Когда доступ воздуха в полость, образованную полушариями, был открыт, они развалились на части просто под действием собственного веса.

Еще один показательный опыт состоял в том, что пятьдесят человек тщетно пытались удержать канат, привязанный к поршню, который под действием атмосферного давления входил в цилиндр, из которого выкачивали воздух.

В других отношениях газ, подобно воздуху, также проявляет свойства жидкостей, только в уменьшенной форме. Например, это показывает явление плавучести. Сами мы перемещаем объем воздуха, который равняется нашему собственному объему, а эффект плавучести позволяет человеку весом в 150 фунтов весить приблизительно на три унции меньше, чем он был бы, находясь в вакууме. Конечно, этого обычно недостаточно, чтобы стать очень заметным, но для объектов, обладающих очень низким удельным весом, такой эффект очень значимый.

Это особенно истинно для веществ (типа некоторых газов), которые легче воздуха. Газообразный водород, например, имеет только 1/14 плотности воздуха. Если заключить водород в пределы некоего сосуда, то он будет подвергнут действию некоторой восходящей силы, подобно тому как на кусок древесины, погруженной в воду, действует выталкивающая сила. Если сосуд достаточно легок, то он будет поднят вверх действием этой восходящей силы. И если взять достаточное количество водорода, то этой силы хватит, чтобы поднять вверх прикрепленную к контейнеру гондолу, содержащую инструменты или даже людей. Впервые такой «воздушный шар» был запущен во Франции в 1783 году.

В тех случаях, когда между газом и твердым телом существует относительное движение, возникает и трение, так же как это происходит при движении твердого тела в жидкости, хотя и снова возникающий эффект намного меньше, чем тот, который возникает при движении в жидкости. Однако трения твердого тела о газ («сопротивления воздуха») вполне достаточно, чтобы замедлить скорость снаряда, летящего в цель, и артиллерист должен скорректировать свой прицел с учетом такого явления. Сопротивление воздуха также препятствует полному и точному обмену кинетической и потенциальной энергией, рассеивая часть энергии в виде теплоты.

Направленная вниз сила поля тяготения пропорциональна полной массе тела, в то время как восходящая сила сопротивления воздуха пропорциональна области контакта перемещающегося тела с воздухом в направлении его движения. Для компактного и относительно тяжелого тела, типа камня, кирпича или глыбы металла, сила тяжести высока, в то время как контакт с воздухом достаточно мал из-за того, что область, по которой оно контактирует с воздухом, достаточно ограниченна; поэтому сопротивление воздуха также достаточно низкое. Когда мы рассматриваем такой тип движения, как это делал Галилео во время своих экспериментов, то можно сказать, что оно по характеристикам достаточно близко к движению в вакууме, поэтому заключения, которые сделал Галилео из своих экспериментов, достоверны.

Если же мы рассмотрим легкие тела, то для них сила тяготения относительно невелика. Если же такие тела являются еще и тонкими и плоскими (например, как листья или перья), то они подставляют воздуху относительно большую площадь поверхности контакта, и сопротивление воздуха приобретает относительно высокое значение. В таких случаях сопротивление воздуха почти компенсирует силу тяжести, и поэтому эти легкие тела падают медленно (в вакууме они падали бы быстро); эта медленная скорость падения и ввела в заблуждение древнегреческих философов, наблюдавших за ней, заставив поверить в то, что между весом тела и скоростью свободного падения имеется тесная взаимосвязь.

При движении тела сквозь воздух под действием силы тяжести имеется некая предельная скорость, так как сопротивление воздуха не остается постоянным, а увеличивается вместе с увеличением скорости движения объекта. По мере увеличения скорости сопротивление воздуха в конце концов компенсирует силу тяжести. Для тяжелых, компактных объектов эта предельная скорость очень высока, но для легких, плоских объектов ее значение весьма невелико. Снежинки быстро достигают своей низкой предельной скорости и в дальнейшем нисколько не ускоряются, хотя они падают много миль. Если компактный объект прикреплен к легкому и плоскому, то эти два объекта вместе достигают гораздо более низкой предельной скорости, чем это было бы, если бы компактный объект падал в одиночку; вот именно поэтому парашют делает возможным благополучное падение с весьма больших высот.

И снова, для газов, как и для жидкостей, действует эффект Бернулли, и величина давления воздуха снижается по мере увеличения скорости перемещения воздуха. Струя воздуха, направленная поперек отверстия, охватывает это отверстие областью низкого давления («частичный вакуум»). Если трубка, в отверстии которой возникает это падение давления, связана с жидкостью, находящейся под нормальным атмосферным давлением, то эта жидкость будет втянута в трубку и выйдет наружу в виде мелких распыленных капель [45].

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию